Wahrscheinlichkeitsrechnung / Stochastik 9. Klasse

Geschrieben von: Dennis Rudolph
Montag, 03. Dezember 2018 um 16:46 Uhr

Die Grundlagen zur Wahrscheinlichkeitsrechnung / Stochastik werden in der 9. Klasse der Schule behandelt. Welche Gebiete auf dem Plan stehen, findet ihr hier aufgelistet und kurz erläutert. In den jeweiligen Themen werden die Inhalte ausführlich erklärt und Beispiele vorgestellt. Aufgaben / Übungen zu den Gebieten gibt es ebenfalls.

Themen 9. Klasse:

Noch keine Ahnung von diesen Themen? Im nächsten Abschnitt sehen wir uns einmal kurz an, um was es dabei jeweils geht.


Einführung Wahrscheinlichkeitsrechnung Klasse 9

Machen wir eine kleine Einführung zur Wahrscheinlichkeitsrechnung (Stochastik) der 9. Klasse. Die folgenden Themen stehen meistens in der Realschule und im Gymnasium in der 9. Klasse auf dem Plan. Aus diesem Grund wird am Beginn erst einmal besprochen, was ein Zufallsversuch bzw. Experiment überhaupt ist. Der Begriff Wahrscheinlichkeit steht dabei ebenfalls sehr schnell auf dem Plan.

Wer sich mit der Wahrscheinlichkeitsrechnung befasst, der landet auch sehr schnell bei der relativen und absoluten Häufigkeit. Dies ist ein Thema, welches auch im Alltag wichtig ist. Wer es nicht versteht, ordnet auch so manche Zusammenhänge aus dem "normalen" Leben falsch ein und merkt dies oft nicht einmal (und wundert sich später über die Konsequenzen).

Das nächste Thema befasst sich mit Ereignis und Gegenereignis. Hier geht es darum, die Wahrscheinlichkeit in Mathe zu berechnen, das etwas nicht passiert (als Gegenteil dazu das etwas geschieht). Eine Spezialfall (der aber relativ oft vorkommt) bei der Wahrscheinlichkeitsrechnung ist der Laplace-Versuch. Bei diesem sind alle Versuchsausgänge gleichwahrscheinlich, zum Beispiel wie bei einem normalen Würfel.

Ein Zufallsexperiment kann aus mehr als einer Stufe bestehen. Wie man mit solchen Experimenten umgeht und wie man diese in einem Diagramm zeichnet, lernt ihr ebenfalls bei uns. Die Pfadregeln für dieses Baumdiagramm helfen dabei einzelne Wahrscheinlichkeiten zu berechnen und zu verstehen.

Abgerundet wird unser Mathematik-Bereich mit dem Thema Mittelwert berechnen. Dabei geht es zum Beispiel darum den Durchschnitt bei Noten von einem Zeugnis zu berechnen. Wem dies nicht reicht wirft noch einen Blick auf den Erwartungswert. Bei diesem geht es darum im Vorhinein zu berechnen welches Ergebnis denn rauskommen müsste.

319 Gäste online