Azubiworld partner

Trapez berechnen: Formeln und Eigenschaften

Geschrieben von: Dennis Rudolph
Montag, 30. Juli 2018 um 17:21 Uhr

Die Formeln und Eigenschaften von einem Trapez bekommt ihr hier. Dies sehen wir uns an:

  • Eine Erklärung was ein Trapez ist und wie man Fläche, Umfang etc. berechnet.
  • Beispiele für Trapeze und die Verwendung von Formeln.
  • Aufgaben / Übungen damit ihr dies selbst üben könnt.
  • Ein Video zum Trapez.
  • Ein Frage- und Antwortbereich zu diesem Gebiet.

Tipp: Ihr solltet bereits einfache geometrische Körper kennen und deren Umfang oder Fläche berechnen können. Wer davon noch keine Ahnung hat sieht bitte erst einmal in Reckteck Umfang oder Reckeck Fläche rein.

Trapez Eigenschaften und Formeln

Sehen wir uns kurz die Definition für ein Trapez an:

Hinweis:

Ein Trapez ist ein Viereck mit mindestens zwei parallelen Seiten.

Ein typisches Trapez sieht so aus:

Trapez

Damit sind die Eigenschaften von einem Trapez:

  • Es ist ein Viereck, hat damit 4 Ecken.
  • Die Summe der Innenwinkel beträgt 360 Grad.
  • Mindestens zwei Seiten sind parallel.
  • Es hat 4 Seiten.
  • Die parallelen Seiten sind die Grundseiten bzw. Grundlinien.
  • Die beiden anderen Seiten sind die Schenkel.
  • Die Mittellinie m ist in jedem Trapez parallel zu den Grundseiten.
  • Die Mittellinie m ist halb so lang wie die Summe beider Grundseiten.
  • Die Höhe h ist der Abstand zwischen den beiden Grundseiten.

Die nächste Grafik zeigt ein Trapez mit den entsprechenden Variablen. Diese werden in den folgenden Formeln eingesetzt:

Trapez Variablen

In schwarz haben wir a, b, c und d und damit die Länge der Seiten vom Trapez. In blau haben wir A, B, C und D. Dies sind einfach nur die Bezeichnungen für die Ecken. In grün haben wir die Höhe h und damit den Abstand zwischen den parallelen Seiten. Die Mittellinie ist m und befindet sich mittig zwischen den parallelen Seiten.

Trapez Formeln: Fläche, Umfang etc.

In diesem Abschnitt sehen wir uns Formeln zum Trapez an für Fläche (Flächeninhalt) und Umfang. Die Formeln geben auch an wie man Höhe und Mittellinie berechnet.

Formel Beispiel 1: Umfang

Die Seitenlängen von einem Trapez sind a = 10 cm, b = 3 cm, c = 8 cm und d = 3 cm. Wie lautet die Formel für den Umfang von einem Trapez und wie groß ist der Umfang von diesem Trapez?

Lösung:

Man erhält den Umfang "U" von einem Trapez durch Addition aller Seitenlängen.

Trapez Umfang

Wir erhalten einen Umfang des Trapezes von 24 cm.

Formel Beispiel 2: Fläche / Flächeninhalt

Gib die zwei Formeln für die Berechnung der Fläche von einem Trapez an. Berechne danach die Fläche wenn die Seite a = 10 cm ist und c = 8 cm. Die beiden parallelen Grundseiten sind dabei 4 cm auseinander.

Lösung:

Trapez Fläche / Flächeninhalt

Der Flächeninhalt von diesem Trapez beträgt 36 Quadratzentimeter.

Übungen / Aufgaben Trapez

Aufgabe 1: Bevor wir rechnen ein paar Fragen. Die erste Frage ist schon einmal einfach: Wie viele Ecken hat ein Trapez?

Überspringen »


Du hast 0 von 6 Aufgaben erfolgreich gelöst.

Video Trapez

Erklärung und Beispiele

In diesem Video sehen wir uns das Trapez an:

  • Was ist ein Trapez?
  • Welche Eigenschaften hat so ein Trapez?
  • Es werden Formeln vorgestellt.
    • Wie berechnet man den Umfang?
    • Wie berechnet man die Fläche?

Nächstes Video »

Fragen mit Antworten Trapez

In diesem Abschnitt sehen wir uns Fragen zum Trapez an.

F: Welche Arten von Trapez gibt es?

A: Die Grafik vom Trapez oben wird als allgemeines Trapez bezeichnet. Darüber hinaus gibt es Trapeze mit gleich langen Schenkeln, welche man dann auch gleichschenklig nennt. Ein Trapez heißt rechtwinklig (oder auch orthogonal), wenn es mindestens einen rechten Innenwinkel besitzt.

F: Welche weiteren Themen sollte ich mir noch ansehen?

A: Seht euch doch noch anderen Figuren an wie zum Beispiel das Parallelogramm, das Rechteck oder auch Quader und Dreieck. Diese Inhalte haben wir dazu online:


Neue Artikel

688 Gäste online